
RYODEN KASEI

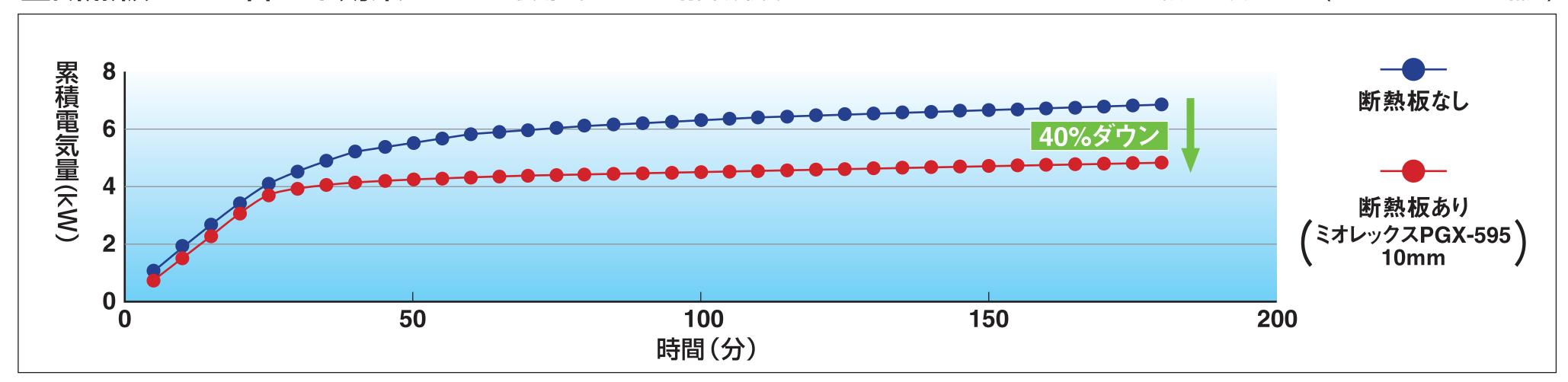
耐熱構造材 ミオレックス

優れた断熱性・機械強度、寸法安定性、抜群のコストパフォーマンス!

問題点

熱ロス・長い段取り時間 熱劣化による寸法変化 熱劣化による絶縁低下 断熱板の破損 作業環境

特長


優れた断熱性・保温性 高耐熱性、寸法安定性 高い電気絶縁性 高機械強度(曲げ、圧縮) 脱アスベスト

効果

段取り時間の短縮・省エネ 耐久性の向上 信頼性の向上 メンテナンス頻度の低減 安全衛生の向上

■断熱板による省エネ効果

※使用装置:80トン射出成形機 金型サイズ:380×320-340H 金型設定温度:140℃(カートリッジヒータ加熱)

■製品概要

品名	耐熱温度(℃)	圧縮クリープ(%)	圧縮強度 (MPa)	主な用途
耐熱有機積層板 PGE-6771 当社独自の技術で有機積層板を改良し強度・耐熱を高めた積層板です。 無機系にない高い機械強度が最大の特徴です。	200	0.12	500~580	●射出成形用断熱板●ブロー成形用断熱板●ゴム成形機用断熱板●精密金型用断熱板
ミオレックスPGX-595(HG) シリーズの中では耐熱性・機械的強度・ 寸法安定性等に優れた信頼性の高いグレードです。	400	0.08	420~480	■ICモールド成形機用断熱板■電子部品搬送用及び検査用治具●チクソモールド用断熱板●半導体製造装置●射出成形用断熱板
ミオレックスPMX-561 (HR-1) 高耐熱性と経済性を兼ね備え、 幅広い用途に対応できる汎用性の高いグレードです。	500	0.27	120~150	●タイヤ、ゴム成形機用断熱板 ●一般直圧プレス、金型用断熱板 ●ICモールド金型側面板 ●誘導加熱炉及び電気炉用絶縁板
ミオレックスPMX-562 (HR-2) 食品衛生法 (K-1113-1) の認定材料です。		_	90~120	●製パン機、他食品製造機械装置
ミオレックスPMX-573(S) 耐熱特性と経済性を兼ね備えたグレードです。	250	0.71	150~200	●繊維機械用断熱板●車両用防熱板●一般機械装置用耐熱・断熱材料

★耐熱温度の値は目安です。★表内の値は測定値の一例で保証値ではありません。 *圧縮クリープ(180°C、10MPa、200hr)。 *圧縮強度の試験は常態、層に垂直方向にて測定。

